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The relations were obtained between the thermodynamically consistent activity coefficient of as­
sociating component and the activity coefficient calculated irrespective of the association in the 
vapour phase. The analysis is limited to binary systems with one associating component and is 
given for the two cases: (a) the associating component d'merizes only, (b) the associating com­
ponent forms, in addition to a dimer, one higher associate, too. 

To calculate the thermodynamically consistent values of activity coefficients in as­
sociating systems it is necessary to complete the a priori information on types of as­
sociates occurring in the system by the values of corresponding equilibrium constants 
of association in the vapour phase. With regard to the absence of these values some 
works have appeared in which the approximation of ideally associating system 
(which decidedly complies well in the vicinity of atmospheric pressure) is replaced 
by the assumption that the original n-component system behaves as an ideal mixture 
of ideal gases (i .e. by the assumption which generally does not hold for these systems 
even at very low pressures). 

By the term ideally associating system is meant here the "macroscopically" n-com­
ponent system in which all the deviations from ideal behaviour are caused just 
by association and whose "microscopic" mixture, i.e. the mixture formed by n 
species of monomers and r species of associates, behaves consequently as an ideal 
mixture of ideal gases. 

Let us have a mixture formed by n "macroscopic" or s > n "microscopic" 
substances. Each "microscopic" substance 1 is defined by the vector 

(1) 

where kil is the number of monomeric units of the i-th component in the given 
molecule. 

Part LXXXI in the series Liquid-Vapour Equilibrium; Part LXXX: This Journal 42, 2233 
(1978). 
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1188 Malijevska : 

The vectors kl will be numbered so that for IE (1, n) monomeric molecules will be 
considered and for IE (n + 1, s), where s = n + r, associated molecules will be 
concerned. 

"Macroscopic" substances will be indexed by capital letters A, B, ... , N. 
For the activity coefficient of associating substance under the temperature T and 

the system pressure P holds 

YL(T, p) = fL(T, P)/[ XL f~(T, p)] = 

= fl(T, P)/[XL ft(T, P~T»)] exp [l/RT f:O v~ dPJ' IE (1, n) (2) 

where the value of the exponentional term is practically equal to unity, v~ is the 
molar volume of pure liquid component L, XL is the mole fraction of sub­
stance L in the liquid phase, fL Its fugacity, f~ its fugacity in a standard state, fl 
denotes the fugacity of monomer of substance Land ft the fugacity of monomer 
in the pure component L at temperature T and saturated vapour pressure pO. 

In case of an ideally associating system, the monomer of substance L ih Eq. (2) 
can be replaced by partial pressures, so that 

(3) 

To obtain the value of activity coefficient it is sufficient in this case to calculate the 
partial pressures of monomer of the given component in mixture and in pure 
stance L. To this purpose it is necessary to solve a system of s equations from 
equations is of the type 

K n +p = P n +p / IT p~l .n+p, p = 1,2, ... , r, 
i= 1 

(4) 

where K n + p are the equilibrium constants of association related to the standard 
state of pure gaseous component in an ideal state at the system temperature and the 
unit pressure, the exponent ki.n+pis the value of the i-th component of the vector 
kn+p; (n - 1) equations for mole fractions of "macroscopic" substances in the vapour 
phase is of the type 

s s n 

YM = I kmiPd.I .I kjiPi , M = A, B, ... , N - 1 (5) 
i = 1 i=1. j= 1 

and the last equation is the equation for total pressure in ideally associating system 

s 

P = Ip i . (6) 
i=1 
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When calculating pi the system of equations simplifies to the equations of the 
type (4) for the equilibrium constants of the homoassociate formations and to the 
equation (6) for the saturated vapour pressure above the pure associating substance. 

Effect of Dimerization 

Let us consider now the simplest assocIatmg system, the "macroscopic" binary 
system (A - B) in which the component A dimerizes, i.e. the system in which, from 
"'microscopic" point of view, three types of substances occur defined by the vectors 

k1 == (1,0), k2 == (0, 1), k3 == (2,0) . (7) 

By solving the system of Eqs (4)-(6) it is possible to obtain for this system the 
following relation for partial pressures of monomers 

P1 ,dim = {J [l + 4K3 PYA(2 - YA)] -- 1}/[2K3(2 - YA)] , (8) 

pi,dim = (.)(1 + 4K3P~) - 1)/(2K3) , (9) 

pi,dim = P~ , (I1) 

where the subscript dim denotes the values calculated on the assumption of the 
existence of dimer of substance A only in associating mixture. 

Let us compare now the value of activity coefficient of associating component 
calculated from the relation (3) with the value which we would obtain on the as­
sumption of ideal behaviour of the vapour phase, i.e. without making allowance 
for the possibility of dimerization of the substance A in the vapour phase: 

(12) 

For high values of dimerization constant holds 

(13) 

From the relations (8) and (9) we obtain after development into the Taylor series 

Pi,dim = (P1 ,dim)K3=o + (8P1.dim/8K3)K3=oK3 + o(K;) = 

= PYA - p 2 Yi(2 - YA) K3 + o(K;} , 
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(15) 

On neglecting the second- and higher-order terms (if K3 ~ 1) it holds 

(16) 

For both limiting values of K3 (relations (13) and (16)) consequently holds 

(17) 

(18) 

Only in the case that 

PYA(2 - YA) = P~ it holds I'A,dim = I'A , id' (19) 

To extend these conclusions to arbitrary value of the equilibrium constant K3 it is 
necessary to prove that the activity coefficient is a monotonous function of K 3 • 

The proof is carried out in Appendix. 

For' a concrete magnitude of the equilibrium constant the activity coefficient 
of associating component acquires a value which lies within the range given by the 
relations (13) and (16). 

In case of the non-associating component it holds 

(20) 

and considering that PZ •dim > PYB it always holds 

I'B,dim > YB,id (YB =F 1) . (21) 

If we are interested in the effect of dimerization of one of components in the vapour 
phase on the value of logarithm of the activity coefficient ratio, it is a priori possible 
to decide only that for the case PYA(2 - YA) < P~ it will be 

(22) 

Effect of Higher Associates 

Let us assume now that we have calculated activity coefficients with regard to the 
dimerizafion of one of components and ask a question what influence upon these 
values can exert a contingent presence of small amounts of higher associates. 
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Let us consider again a binary mixture (A-B) in which now "microscopic" 
substances occur defined by the vectors 

ki == (1,0), k z == (0, 1), k3 == (2, 0), k4 == (n, 0), n > 2 ° (23) 

By solving the system of Eqs (4)-(6) it is possible to obtain the equation for this 
case 

For partial pressures of monomer of associating component we can write 

PI = PI,dim + P~,dim(nYA - YA - n)K4 /[1 + 2K3 PI,dim(2 - YA)] + 
+ o(K~) (25) 

and 

On neglecting the second- and higher-order terms (i.e. for very small quantities 
of higher associates) it holds 

(27) 
where 

For X ~ 1 it is YA ~ YA,dimo 

The following two statements are proved in Appendix: 

(30) 

The first inequality in Eq. (30) implicates PYA > P~o 
For the non-associating component the sequence holds 

YB > YB ,dim > YB,id , (31) 

for, if we do not take into account all the kinds of formed homoassociates of the 
substance A, we calculate with larger number of molecules of substance A in the 
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mixture than it really is, which results in lower calculated values of partial pressure 
of non-associating substance. 

Accordingly we can summarize that in the whole interval YA E (0, 1) holds : 
If we do not include the effect of the higher associate formations then the cal­

culated values of activity coefficients are always lower for the non-associating sub­
stance. For the associating substance they are lower if PYA(2 - YA) ~ P~ holds 
but higher than the adequately calculated values, if it holds PYA > P~ or the ine­
quality (35). The behaviour of activity coefficient of associating component was not 
successfully a priori determined for the values of saturated vapour pressure of as­
sociating substance A within the range 

As far as the change of logarithms of activity coefficients is concerned it can be 
stated in advance that for the case PYA > P~ we shall calculate higher values if we 
do not take the effect of higher associates into account. 
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FIG. ! 

Dependence of Activity Coefficient on Com­
position in the System a Acetic Acid(!)-Di­
ethyl Ether(2) (ref. 3), b Acetic Acid(l)­
-n-Octane(2) (ref. 4). c Propionic Acid(l)-
-Cyclohexane(2) (ref. 5) 

Solid line denotes the course of the de­
pendence if the acid dimerization in the 
vapour is considered, i.e. )ldim' dashed line 
the c~rse of )lid' 
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The relations derived can be illustrated on the systems with one fatty acid. It is 
evident from Fig. 1 that neglecting the fatty acid dimerization in the vapour phase 
will cause a considerable error when calculating activity coefficients of both com­
ponents. The corrections for the higher associate formations (in this case the effect 
of trimerization according to Potter! and the effect of quadramers formations ac­
cording to Ritter2 was investigated) are several orders lower. Considering that the 
inaccuracies in values of activity coefficients, which arise from neglecting the higher 
associate formations, for fatty acids are roughly in accordance with the errors due 
to inaccuracies when determining the dimerization constants, the effect of higher 
associates for the systems with aliphatic acids is not usually taken into account. 

APPENDIX 

Proof of general validity of relations (17), (18) and (19). If activity coefficient (or 
its logarithm) is not a monotonous function of equilibrium constant it is possible 
to find such a value K3 for which holds 

8 In "lA,dimj8K 3 = ° , (32) 

which implicates 

(33) 

After inserting for P 1 ,dim and P~,dim from the relations (8) and (9) it can be, on dif­
ferentiating and rearranging, obtained the condition 

Z(1 - y'[1 + WJ) = W(1 - y'[1 + ZJ) , (34} 

where 

and 

Eq. (34) is fulfilled there and then if at least one of the following relations holds : 

a) 4K3 YA(2 - YA) = 0, 

b) 4K4P~ = 0, 

c) Z = W, which corresponds to the condition (19) P~ = PYA(2 - YA) for which 
YA,id = YA,dim and the activity coefficient is consequently independent of the value 
of dimerization constant. 

In this way we succeeded in proving that the above-mentioned relations (17), (18) 
and (19) must hold for all K3 > ° in the whole range of YA E (0,1). 

Collection CzechosJov. Chern . Cornrnun. [Vol. 441 [1979] 



1194 

Proof of statement (29). To be 'l'A > 'l'A,dim it must hold 

o < {P~:d~m[n + YA(l - n)]}j[l + 2K3 P1 ,dim(2 - YA)] < 

< (P1',dim)n-lj(l + 2K3P1',dim), 

where P l.dim and pi,dim can be expressed by the relations (8) and (9). 

Let us denote 

a = )[1 + 4K3 PYA(2 - YA)] , 

P = )(1 + 4K3P~) , 

Then the inequality (35) can be rewritten into the form 

0< [n + Y(l - n)]ja{(O( - 1)j[2K3(2 _ y)]}n.- l < 

< [(P - 1)j(2K3)]n-ljP . a> 1, P > 1 

Malijevska : 

(35) 

(36) 

It is possible to prove easily that the function (x - 1)n-1Jx is an increasing in x and 
consequently if 

a ~ p, 
then 

~7) 

where the equality holds just for the case 0( = p. In order that the inequality (36) 
may hold the inequality must be fulfilled for Y =1= 1 

[n + Y(l - n)] < (2 _ y)n-l . (38) 

If we rewrite the right-hand side of the inequality into the form 

[1 + (1 - y)r- 1 = 1 + (1 - y)(n - 1) + (n - 1) (n - 2)(1 - y)2j2 + 

+ ... = n - ny + y + (n - 1) (n - 2)(1 - yYj2 + ... (39) 

the validity of Eq. (38) is obvious. Thus, it has been proved that if 

which, implicates 
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then 

'YA > YA,dim for YA #- 1 . 

Proof of statement (30). If YA < 'YA,dim it must hold 

o < (Pi ,dimt- 1/[1 + 2K3Pi,dim] < 

< (PI,dim)" - l (n + YA - nYA)/[l + 2K3 P 1 ,dim(2 - YA)] . (40) 

Let us assume that 

It holds 

since 

Con seq uently 

and simultaneously 

PI,dim> Pi,dim . 

n + YA - nYA > 2 - YA 

(n - 2) - (n - 2) YA > 0 YA < 1 , n > 2. 

(n + YA - nYA)J1 + 2K3 P1 ,dim(2 - YA)] > 

> (2 - YA)/[l + 2K3 P l ,dim(2 - YA)] 

(2 - YA)/[l + 2K3 P 1 ,dim(2 - YA)] = 1/[1/(2 - YA) + 2K3Pl,dim] > 

> 1/[1 + 2K3Pl ,dim] . 

Then also 

[P~:dim(n + YA - nYA)]/[l + 2K3 P I,dim(2 - YA)] > 

> P~:diIm/ [1 + 2K3Pl ,dim] . 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

Considering that the function xD -l/( 1 + 2K3X) is an increasing one in x then on the 
assumption (41) holds 

and therefore the inequality (40) is under this assumption fulfilled. 
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